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Q U A S I - O N E - D I M E N S I O N A L  M O D E L  OF THE R O D - T A R G E T  I N T E R A C T I O N  

Yu. M. Volchkov UDC 539 

Numerical techniques are proposed for determining the integral characteristics of penetration 
of a rod into an target. An algorithm for solving two-dimensional elastoplastic problems is 
employed. To construct the solution, a one-dimensional finite-element column is used ( a two- 
dimensional domain is replaced by a one-dimensional domain). 

In t roduc t i on .  Rod-target interaction is accompanied by complex physical processes. An exact math- 
ematical formulation of the problem that takes into account the physicomechanical properties of the rod and 
target materials (including their dependence on temperature and deformation rate) and the physics of phe- 
nomena associated with the penetration of the rod into the target (for example, phase transitions in the 
material due to the strong heating) leads to a complicated nonlinear system of differential equations that 
can be solved only with the use of high-speed computers with large random-access memory. The problem 
of high-velocity interaction between a rod and a target belongs to the class of contact problems of dynamic 
deformation of inelastic bodies. Rather effective algorithms for the numerical solution of these problems are 
currently a~-ailable (see, e.g., [1-7]). However, in many cases, it is difficult to estimate the errors that arise 
inevitably in the numerical solution. When the problem is solved in Lagrangian coordinates, one has to 
repeatedly regenerate the grid in the regions of considerable distortion of the cells and to extrapolate the 
solution from the previous grid to the new grid, which leads to loss of accuracy. When Eulerian coordinates 
are used, errors arise, in particular, in calculating rapidly changing contact and free surfaces and in averaging 
quantities in the case of substance overflow from one cell to another. In the formulation and solution of 
problems of material deformation under intense thermal and force actions, one should bear in mind that 
experimental data on physicomechanical properties of materials under extreme conditions are usually incom- 
plete. The constants of a material, which characterize its strength properties, and the constitutive equations 
are determined with an error that can reach dozens of percent. Therefore, it is of practical interest to con- 
struct a sequence of mathematical models whose complexity increases with the capability of providing an 
adequate description of quantitative and qualitative characteristics of the impact. 

Sagomonyan [8] gave a detailed review of one- and two-dimensional models of high-velocity impact. 
One of the first one-dimensional models of high-velocity impact is the hydrodynamic model proposed by 

Lavrent'ev for estimating the penetration depth of a cylindrical rod into a semi-infinite target [9]. According 
to this model, we have (l/lo)/(pt/Pr) -1/2 ---- const, where l0 is the initial length of the rod, l is the penetration 
depth, and Pt and Pr are the densities of the target and rod materials, respectively. 

Various modifications of the hydrodynamic model have been proposed to incorporate approximately 
the effect of the strength properties of the rod and target materials. For example, in the model developed 
under the assumption that the target failure follows the "force a plug out" mechanism, only the effect of 
shear stresses is taken into account among all factors responsible for the penetration resistance of the target. 
"rate [10] proposed a modification of the hydrodynamic theory that takes into account the strength of rod and 
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target and gave experimental data on the dynamic yield stress. All the approximate models include "fitting" 
coefficients, which can be determined experimentally. 

Below, we consider two numerical techniques of determining the integral characteristics of the impact, 
which we call quasi-one-dimensional techniques. These techniques are based on the algorithms for solving two- 
dimensional dynamic  problems of elastoplastic deformation [4-7]; at the same time, a one-dimensional finite- 
element column is used to obtain the solution (a two-dimensional domain is replaced by a one-dimensional 
domain). 

1. C o n s t i t u t i v e  Equa t ion .  In deriving the constitutive equation, we assume that  1 +-,/~j ~_ 1, where 
~/~j are the components  of the elastic s train tensor. This assumption is valid for most metals. Moreover, the 
volumetric deformation of an element of the medium is assumed to be elastic. Under these assumptions, the 
kinematic relations, valid for arbitrary strains, can be written in the form [11] 

! ! ! 0.) ! ~/ij = c~eij -- "/jk~gki --  "/ik k j  --  ~ i j ,  ; /  ----- o~e, P t  = P r  O~3/2, (2 = t - 27/3, 

= + = o ,  = - / 3 ,  ( 1 . 1 )  

where ~ij are the components of the plastic strain-rate tensor, and wit  = O v i / O x j - O v j / O x i  are the components 
of the rotation-rate tensor. 

The total  strains eij satisfy the relations 

Ovk Ovk 
= + = 

To obtain consti tutive relations between the stresses, strains, and temperatures,  we assume that  the internal 
energy U is a function of the first and second invariants of the elastic strain tensor and entropy S: U -- 
U(% J2, S), where J2 = ~/~j~j /2.  Using the law of conservation of energy (ri jeij  -- pt gr and relations (1.1), we 

l ! l ~ I ~ t V obtain a e  + a~ijeij = p t a e U 7  + p t T i j ( a e i j  - 71kiWkj 7k j  hi - Wij) J2 + p t U s S .  Hence, 

(r = pt~V.y,  (r~j = pt(~'Y~jgj=, p t V s S  = pt"/ij~ij! ' V j . .  (1.2) 

We rewrite the last relation in (1.2) in the form 

1 ! ! 
T S  = ~ a i j ~ i j ,  (1.3) 

where T = U s  is the temperature. Relations (1.2) and (1.3) are expressed in terms of the free energy 
= U - S T  as follows: 

! r __T ~2TT~I. = 1 ! , O" = p t ~ ( I ) 7 ,  O'i~j = ptO~'Ti j J2, a p t  O'ijg~iJ + T(~TT~/ + T(~ j~TJ2"  (1.4) 

The quantity - -Tf f~TT has the meaning of heat  capacity for constant strains and is denoted by cy.  
Further elaboration of Eqs. (1.4) depends on the choice of the function ~ and on the assumed character 

of irreversible plastic deformation. 
If we assume tha t  the heat capacity c v  is independent of 7 and J2, the average stress a does not depend 

on J2, and the relation between a~j and "/~j is linear, the function �9 can be written in the form 

= [~(~,) + T~(-~) + 2#J~ + f ( T ) ] / p r ,  

where # is the shear modulus. In this case, relations (1.4) become 

= a s / 2 ( ~ e  + r ~ ) ,  a~j = 2#a2 /~ /~ j ,  c v T  = ( 1 / a p t ) ( r ~ j ~ j  + ( a / p r ) e T ~ .  (1.5) 

In the elastoplastic model, we assume the following relation between the average stress ~, the invariant of 
elastic strains "),, and the temperature T: 

(r ----- KAY~2 7 - e v F p t ( T  - To) .  (1.6) 
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Fig. i 

Here K = E/ (3(1  - y)) is the coefficient of volumetric expansion, E is Young's modulus,  v is Poisson's ratio, 
F is the Gr/ineisen coefficient, T is the absolute temperature,  and To is the tempera ture  corresponding to 

normal conditions (usually 300 K). 
Relation (1.6) follows from the first relution in (i.5) provided that 

r = K'y2/2 + (3/2)cyToPr In a,  ~ = - ( c y / a ) F p r .  

In this case, the third relation in (1.5) takes the form 

p t c oz = o ' i j ~ i j / (  V f i t )  - -  r T e .  ( 1 . 7 )  

The  rate of irreversible deformation is determined by the relations 

' ' (1.8) ~ i j  -~ )v'fij" 

The procedure for calculating the nonnegative multiplier A is described in [7]. Equat ions (1.1) and (1.6)-(1.8) 

determine the elastoplastic model. 
In the numerical algorithms considered-below, the calculation domain consists of one finite-element 

column subject to boundary conditions that  model the flow of the substance. In the  calculation domain, we 
use the model of elastoplastic flow with large strains (1.6)-(1.8). The stresses and strains in the calculation 

domain are determined by the algorithm developed in [4-7]. 
The  techniques differ in the form of boundary conditions at the calculation-domain boundary, formu- 

lated according to which qualitative and quantitative characteristics of the impact are to be determined. 
2.  Q u a s i - O n e - D i m e n s i o n a l  M o d e l  for  E s t i m a t i n g  t h e  L i m i t  P e n e t r a t i o n  D e p t h  o f  t h e  R o d  

in to  t h e  T a r g e t .  The  rod is considered as an undeformable cylinder of radius R, height h, and mass M. The 
target of thickness H is an isotropic elastoplastic medium. We consider the domain D (calculation domain) 

located under the rod and bounded by the lateral surface A1A2 (Fig. 1). 
In the impact, the t ime-dependent shear arz and normal err stresses occur at the  lateral surface AIA2. 

To analyze the stress-strain state, one has to determine these stresses as functions of the spatial coordinates 
and time. Therefore, a two-dimensional problem should be solved. In the quasi-one-dimensional model, the 
interaction between the domain D and the remaining part of the target is modeled by boundary conditions 

at A1A2. 
To estimate the limit penetrat ion depth, we formulate the conditions at A1A2 as follows. The radial 

stress ar  is assumed to vanish. Obviously, of all possible variants of the boundary  conditions for at ,  this 
condition ensures minimum penetrat ion resistance of the target.  If there are no radial  stresses on the lateral 
surface AIA2, radial velocities occur, which lead to the outflow of a part of the mater ia l  from the calculation 
domain. The material that flows out through the surface AIA2 is not taken into consideration in further 
calculations. Since the mass of this material has a nonzero axial velocity, its elimination in the calculations 
means that  some part  of the momentum in the axial direction is ignored, which leads to deceleration of the 

rod. 
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The  boundary  conditions for the axial velocity uz and the shear stress errz at the surface A1A2 are 

formulated as follows. First, uz is assumed to vanish at the  lateral surface. If larzl < v* in this case (r* being 
the yield point in shear or the shear resistance), the solution is determined for the condition uz = 0 at A I A 2 .  

If Icrrzl ~> r*, the solution is found for larzl = +v*; in this case, the sign of (rrz is chosen the same as tha t  of 
arz for a zero value of Uz. If the solution is determined by the techniques described in [4-7], no iterations are 
required to satisfy the above-formulated boundary conditions. 

3. Q u a s i - O n e - D i m e n s i o n a l  M o d e l  for  E s t i m a t i n g  t h e  L i m i t  D e p t h  o f  t h e  R e a r  S pa lUng  
Zone .  One of the main factors tha t  determine rear spallings is the pressure ampli tude at the shock-wave 
front. Obviously, the pressure ampli tude is maximum if it is assumed that  the rod does not deform during 
penetra t ion and, of all variants of the boundary conditions for the radial components  of velocity and stress, 
the condit ion Ur -- 0 is satisfied on the surface A1A2. 

The  boundary condition for shear stress at= is taken to be the same as in Sec. 2. 
4. D e p e n d e n c e  o f  t h e  P e n e t r a t i o n  D e p t h  o n  t h e  R a t i o  o f  D e n s i t i e s  o f  t h e  R o d  a n d  T a r g e t  

M a t e r i a l s .  The rod is assumed to be an undeformable cylinder of mass M that  has an initial impact velocity 
V0. The n  its velocity is set equal to  the normal velocity at the upper boundary of the finite element of the 
calculation domain which is in contact  with the cylinder base. Since the calculation domain consists of one 
finite-element column, the solution is calculated with the use of the algorithm given in [4-7] by finite formulas. 

The  input da ta  of the problem were as follows: the initial velocity V0 ---- 5 .104  cm/sec, the rod radius 
R = 0.5 cm, the rod height h -- 1.0 cm, the density of the target  material Pt = 8.103 g /cm 3, Pt/Pr --- 0.4, 0.6, 
0.8, and 1.0 (pr is the density of the rod density), the Young's modulus E -- 2-105 MPa,  the tangent modulus 
E '  = 0, the Poisson's ratio ~, -- 0.3, the yield point in shear  vs -- 5 .102  MPa,  the Griineisen coefficient 
r --- 2.0, the heat capacity cy  = 8.96 �9 102 J / ( k g .  K), To ---- 300 K, the target thickness H = 5 cm, and the 
number  of finite elements in the column N = 50. 

Figure 2 shows the quant i ty  l / h  (l is the penetra t ion depth of the rod) as a function of v/-~r/Pt . 
The  crosses and circles refer to the results obtained under  the assumptions tha t  the radial velocity and 
radial stress vanish at the boundary  of the calculation domain,  respectively. The  solid curve refers to the 
Lavrent 'ev  hydrodynamic model. For the aforementioned input  data, both variants of boundary conditions 
at the boundary  of the calculation domain give close results. 

5. D e p e n d e n c e  o f  t h e  D e p t h  o f  P e n e t r a t i o n  o f  a C y l i n d r i c a l  R o d  i n to  a T a r g e t  on  t h e  
I m p a c t  Ve loc i ty .  Tate  [10] presented experimental da t a  on the high-velocity impact  of cylindrical rods of 
mild steel against a target of the same material and compared them with theoretical results obtained with 
the use of the modified hydrodynamic model. The yield point  was Yp = 11 kbar. The  diameter of specimens 
was 0.6 cm. The modified hydrodynamic model includes a dimensionless parameter  A, which characterizes 
the s t rength  of the rod and target. This parameter is determined from the Hugoniot adiabat and ul t imate 

strength.  
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Figure 3 shows the penetration depth versus the rod velocity V = ptVo2/(4aT). The triangles, squares, 
and circles correspond to the experimental data of [10]. The triangles, squares, and circles refer to the rod 
length h = 1.25, 1.5, and 2.5 cm, respectively. The solid curves refer to the results obtained by the modified 
hydrodynamic model [10] and the dashed curve to calculations by the technique described in Sec. 2. The 
theoretical curve agrees satisfactorily with the experimental data with allowance for their scatter. 

The above examples show that the simple calculation techniques proposed here may be used to estimate 
the integral characteristics of the impact processes. 
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